DATA SHEET

SR8824

CREATE: 29 August 2005 REV. No. 201205-S

24 CHANNEL PARALLEL CORRELATOR CIRCUIT FOR GPS AND GLONASS RECEIVERS

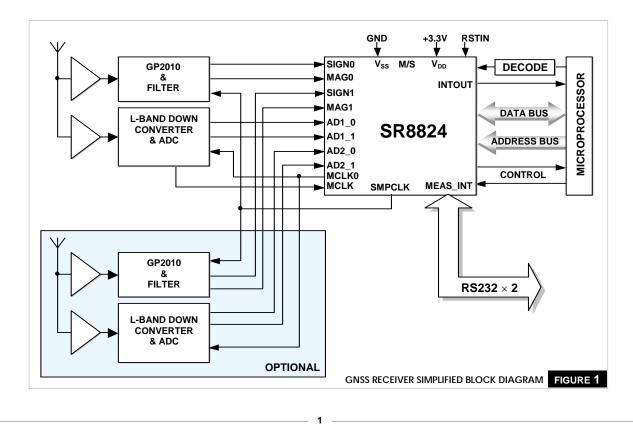
FEATURES

- 24 Fully Independent Correlation Channels
- Switchable to Receive GPS or GLONASS Codes
- Input Multiplexer for Multiple GPS Front-Ends
 Allows Antenna Diversity
- Input Multiplexer for GLONASS Multiple (Separate Channels) Front-Ends
- On-Chip Dual UART and Real Time Clock
- □ Fully Compatible with GP2010, GP2015 GPS Receiver Front-End
- Memory and peripheral control logic for AD2106x micro processors
- □ 144-pin Plastic Quad Flatpack
- Power Dissipation Less Than 100mW

APPLICATIONS

UniStar Microelectronics Co. Ltd. • www.unistarchips.com

- GNSS Navigation Systems
- High Integrity Combined Receivers
 GNSS Geodetic Receivers
- GNSS Geodetic ReceiversGNSS Time Reference


TYPICAL GNSS RECEIVER (see Fig. 1)

All GPS satellites use the same L1 frequency of 1575·42MHz, but different Gold codes, so a single front-end may be used.

Each GLONASS satellite will use a different 'L1' carrier frequency, in the range 1598.0625 to 1615.500MHz, with 0.5625MHz spacing, but all with

the same 511-bit spreading code, so wide-band receiver used with a single front-end.

To achieve better sky coverage it may be desirable to use more than one antenna, in which case separate front-ends will be needed.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	
VDD	I/O supply voltage	2.97	3.3	3.63	V	
V _{IH}	Input High Voltage	2.0	_	5.5	V	
V _{IL}	Input Low Voltage	-0.3	_	0.8	V	
VT	Threshold point	1.45	1.58	1.74	V	
VT+	Schmitt trig Low to High threshold point	1.44	1.50	1.56	V	
VT-	Schmitt trig. High to Low threshold point	0.89	0.94	0.99	V	
IL	Input Leakage Current	_	_	±10	μA	
IOZ	Tri-State output leakage current	_	_	±10	μA	
RPU	Pull-up Resistor	39	65	116	kΩ	
RPD	Pull-down Resistor	40	56	108	kΩ	
V _{OL}	Output low voltage IOL=2,424mA	_	_	0.4	V	
V _{OH}	Output high voltage IOH=2,424mA	2.4	_		V	
I _{OL}	Low level output current VOL=0.4V 2mA	2.4	4.0	5.0	mA	
	4mA	4.7	8.0	10	mA	
	8mA	9.4	15.9	19.8	mA	
	12mA	14.2	23.9	29.8	mA	
	16mA	18.9	31.8	39.8	mA	
	24mA	28.3	47.8	59.7	mA	
I _{OH}	High level output current VOH=2.4V 2mA	2.8	5.9	9.5	mA	
	4mA	5.6	11.9	19	mA	
	8mA	11.2	23.8	38.3	mA	
	12mA	16.8	35.7	57	mA	
	16mA	22	47.7	76	mA	
	24mA	33.7	71.5	115	mA	

DC CHARACTERISTICS

PIN DESCRIPTIONS

- **NOTE 1.** 10μF and 0.01μF ceramic bypass capacitor is required to externally connect between VDDint and GND.
- NOTE 2. 4.7 μ F ceramic bypass capacitor is re-
- NOTE 3. The functions of <u>RW</u> and WEN pins depend on whether the GP1020 is in Motorola[™] (MOT/<u>INTEL</u> = '1') or Intel[™] mode (MOT/<u>INTEL</u> = '0'). In Motorola mode, WEN is an enable (active high) and <u>RW</u> is Read/Write select ('1' = Read). In Intel mode <u>RW</u> is Read, active low, and WEN is Write also active low.

V _{ss}	10, 19, 21, 23, 36, 46, 66, 67, 72, 86, 109, 127, 133, 143
V_{DD} (3.3V)	9, 25, 40, 56, 73, 91, 118, 138, 144
V_{DD INT} (3.3V)	128, 129
VREF_1.8 (Output 1.8V)	130
GND	131, 132

NOTE 4. WRPROG is used to modify the timing of bus operations; when it is held HIGH the internal write signal is ORed with ALE to allow time for the internal address lines to stabilize; when it is held LOW there is no delay added to write.

NOTE 5. All V_{ss} and all V_{DD} pins must be used in order to ensure reliable operation.

UniStar

Microelectronics	Co. Ltd.	

www.unistarchips.com

UniStar

PIN No.	PIN NAME	BUFFER TYPE	DIREC- TION	DES	CRIPTION		
-	IED0	PISUN	I	External Data Input 0			
	IED1	PISUN		External Data Input 1			
	IED2	PISUN	I	External Data Input 2			
	IED3	PISUN		External Data Input 3		DESCRIPTION	
	IED4	PISUN	1	External Data Input 4	0	F BUFFER TYPE	
i	IED5	PISUN		External Data Input 5	BUFFER		
	IED6	PISUN	I	External Data Input 6	TYPE	DESCRIPTION	
	IED7	PISUN	I	External Data Input 7		Input pad	
	VDD				PINN	Input pad	
0	VSS		1				
1	ADI2_1	PIUN	I	GL SV Input I2_1	PIUN	Input pad with pull-up	
2	ADQ2_1	PIUN		GL SV Input Q2_1			
3	ADI2_0	PIUN	I	GL SV Input I2_0	PISUN	Schmitt trigger input page	
4	ADQ2_0	PIUN	I	GL SV Input Q2_0		with pull-up	
5	ADI1_1	PIUN	I	GL SV Input I1_1	PRI 16N	CMOS 3-state output pa	
6	ADQ1_1	PIUN	I	GL SV Input Q1_1	DETON	with input and limited sl	
7	ADI1_0	PIUN	I	GL SV Input I1_0			
8	ADQ1_0	PIUN	I	GL SV Input Q1_0		rate (16mA)	
9	VSS				POL8N	CMOS output pad with	
0	CLK40D	PINN	1	40 MHz Clock (UART)		limited slew rate (8mA)	
1	VSS				PO8N	CMOS output pad (8mA	
2	MCLK	PINN	I	40 MHz Master Clock			
3	VSS						
4	MCLKO	PO8N	0	40 MHz Output			
5	VDD						
6	PMCLK	PIUN	I	Polarity MCLKO			
7	SMPCLK	PO8N	0	Sampling clock to down-converter	•		
8	RTCINT	PISUN	1	Real time clock interrupt input			
9	SIGN1	PIUN	I	Satellite Input 1, Sign			
0	MAG1	PIUN		Satellite Input 1, Magnitude			
1	SIGN0	PIUN	I	Satellite Input 0, Sign			
2	MAG0	PIUN		Satellite Input 0, Magnitude			
3	MS1	PINN	I	ROM addr. pre decode strobe			
4	MS3	PINN	I	Correlator addr. pre decode strob	e		
5	MS2	PINN	I	Interfaces addr. pre decode strob			
6	VSS						
7	BITECNTL	POL8N	0	BITE control to down-converter G	PS		
8	PLLLOCKN	PIUN	I	PLL lock status from down-conve	ter		
9	GLBIT	POL8N	0	BITE control to down-converter G	L		
0	VDD						
1	PLLLOCKG	PIUN	I	I/P to monitor GLONASS front-en	d		
2	TMAG	POL8N	0	Test PRN Pattern Magnitude o/p			
3	TSIGN	POL8N	0	Test PRN Pattern Sign output			
4	TICO	POL8N	0	TIC output from Master			
5	PWRRTC	PIUN	I	RTC PWR pin sost			
6	VSS						
7	RTSA	POL8N	0	Request To Send UART A			
8	DTRA	POL8N	0	Data Terminal Ready UART A			
9	RIA	PINN	I	Ring Indicator UART A			
0	CDA	PINN	I	Carrier Detect UART A			
1	DSRA	PINN	I	Data Set Ready UART A			
2	CTSA	PINN	i	Clear To Send UART A			
3	DTRB	POL8N	Ō	Data Terminal Ready UART B			
4	OP2A	POL8N	Ō	User Defined output UART A			
5	RXA	PINN	ĩ	Receive Data input to Channel A	of the dual U	ART	
6	VDD						
7	ТХА	POL8N	ο	Transmit Data output from Chann	el A of the du	al UART	
8	OP2B	POL8N	ŏ	User Defined output UART B			
9	RTSB	POL8N	ŏ	Request To Send UART B			
0	CTSB	PINN	ĭ	Clear To Send UART B			
1	RIB	PINN	i	Ring Indicator UART B			
2	RXB	PINN	i	Receive Data input to Channel B	of the dual U	ART	
3	CDB	PINN	i	Carrier Detect UART B			
3 4	DSRB	PINN	1	Data Set Ready UART B			
4 5	TXB	PINN POL8N	0	Transmit Data output from Chann	el B of the du	al LIART	
5 6	VSS	I- OLOIN	0	Hansmit Data output nom Chann			
ь 7	VSS						
8		POL8N	0	On/Off control for LNA by CPS			
	DISCOPN		0	On/Off control for LNA by GPS	22		
9	DISCOPG TMARK	POL8N	0	On/Off control for LNA by GLONA			
^		POL16N	0	One pulse per second output			
0 1	MARKFB	PIUN	1	Time Mark line driver feedback			

- DATA SHEET REV. 201205 • SR 8824 • 24-CHANNEL PARALLEL CORRELATOR CIRCUIT FOR GPS AND GLONASS RECEIVERS

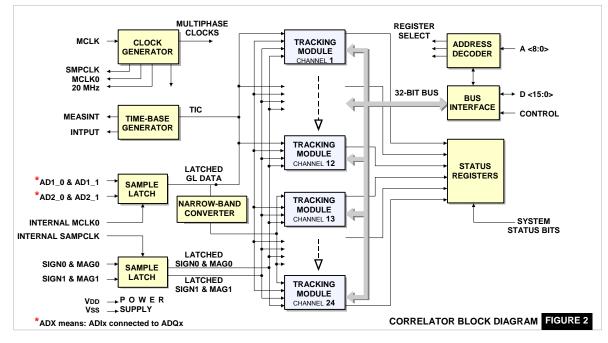
	DIN		DUCCED	DIPEC	
LE 1	PIN No.	SIGNALNAME	BUFFER TYPE	DIREC- TION	DESCRIPTION
INUE	73	VDD			
	74	CSBT	POL8N	0	Boot ROM chip select
	75	WRRTC	POL8N	0	Write strobe external RTC
	76	RDRTC	POL8N	0	Read strobe external RTC
	77	RSTIN	PINN	I	Master Reset (active low)
	78	INTB	PIUN		External interrupt B
	79	IRQ	POL8N		Peripheral devices interrupt request
	80	INTA	PIUN	I	External interrupt A
	81	WRRS	POL8N	0	Write strobe external UART
	82	MRES	POL8N	0	Soft reset external devices
	83	BMS	PINN	I	Boot Memory Select
	84	CSRTC	POL8N	0	Chip select external RTC
	85 86	ALERTC VSS	POL8N	0	Address latch enable external RTC
	87	MEAS_INT	POL8N	ο	Interrupt output to microprocessor
	88	RESET	POL8N	Ĭ	Master Reset (active low)
	89	RESRS	POL8N	ò	Hard reset external devices (High)
	90	INTOUT	POL8N	ŏ	Interrupt out to microprocessor
	91	VDD		•	
	92	CSB	POL8N	0	Chip select 2 external UART
	93	CSA	POL8N	Ō	Chip select 1 external UART
	94	RD	PINN	Ĩ	Bus control – read strobe
	95	WR	PINN	I	Bus control – write strobe
	96	WDI	POL8N	0	Reset external watch Dog
	97	ACK	POL8N	0	Data bus ready
	98	WDO	PIUN	I	External Watch Dog input
	99	A9	PINN	I	Register Address, bit 9
	100	A8	PINN	I	Register Address, bit 8 (Test mode, GND)
	101	A7	PINN	I	Register Address, bit 7
	102	A6	PINN		Register Address, bit 6
	103	A5	PINN	I	Register Address, bit 5
	104	A4	PINN		Register Address, bit 4
	105	A3	PINN	I	Register Address, bit 3
	106	A2	PINN		Register Address, bit 2
	107	A1	PINN	I	Register Address, bit 1
	108	A0	PINN		Register Address, bit 0
	109	V _{SS}		1/0	Data Dua hit 0
	110	D0	PBL16N	1/0	Data Bus, bit 0
	111	D1	PBL16N	1/0	Data Bus, bit 1
	112	D2	PBL16N PBL16N	1/0	Data Bus, bit 2
	113 114	D3 D4	PBL16N PBL16N	I/O I/O	Data Bus, bit 3
	114	D4 D5	PBL16N PBL16N	1/O	Data Bus, bit 4 Data Bus, bit 5
	116	D5	PBL16N	1/0	Data Bus, bit 6
	117	D7	PBL16N	1/O	Data Bus, bit 7
	118	VDD	FBLION	1/0	
	119	D8	PBL16N	I/O	Data Bus, bit 8
	120	D9	PBL16N	1/0	Data Bus, bit 9
	121	D10	PBL16N	1/O	Data Bus, bit 10
	122	D11	PBL16N	1/0	Data Bus, bit 11
	123	D12	PBL16N	1/O	Data Bus, bit 12
	124	D13	PBL16N	I/O	Data Bus, bit 13
	125	D14	PBL16N	I/O	Data Bus, bit 14
	126	D15	PBL16N	I/O	Data Bus, bit 15
	127	VSS			
	128	VDD INT			
	129	VDD INT			
	130	VREF_1.8 (Outp	ut 1.8V)		
	131	GND			
	132	GND			
	133	VSS	DO: 171	-	
	134	OED7	POL12N	0	External Data Output 7
	135	OED6	POL12N	0	External Data Output 6
	136	OED5	POL12N	0	External Data Output 5
	137	OED4	POL12N	0	External Data Output 4
	138	VDD		~	External Data Output 2
	139	OED3	POL12N	0	External Data Output 3
	140	OED2	POL12N	0	External Data Output 2
	141	OED1	POL12N	0	OExternal Data Output 1
	142	OED0	POL12N	0	External Data Output 0
	143	VSS			

4

DATA SHEET REV. 201205 • SR 8824 • 24-CHANNEL PARALLEL CORRELATOR CIRCUIT FOR GPS AND GLONASS RECEIVERS

FUNCTIONAL DESCRIPTION

The SR8824 is a 24-channel digital Correlator which may be used to acquire and track the GPS C/A code or the GLONASS signals. The SR8824 incorporates a 24-channel GNSS Correlator.


The SR8824 has on-chip support for the AD2106x 32-bit processors .

12 channels of the SR8824 includes independent digital GLONASS conversion to narrow-band, inde-

pendent digital down-conversion to baseband, C/A and GLONASS code generation, correlation, and accumulate-and-dump registers.

Another 12 channels of the SR8824 don't includes independent digital GLONASS conversion to narrow-band.

Fig. 2 shows a block diagram of the Correlator. It consists of the following blocks:

SOFTWARE REQUIREMENTS

The very wide variety of types of GNSS receiver needs to operate the correlator in different ways. So to accommodate this and also to allow dynamic adjustment of loop parameters, the SR8824 has been designed to use software for as many functions as possible. This flexibility means that the device cannot be used without a microprocessor closely linked to it, but as a processor is always needed to convert the output of the SR8824 into useful information this is not a significant limitation.

The software associated with the SR8824 can be divided into two separate modules:

1. Acquire and track satellite signals to give pseudo-ranges.

2. Process pseudo-ranges to give the navigation solution and format it in a form suitable for the user.

For the Navigation Solution to be possible all of the pseudoranges must have exactly the same clock error, which can then be removed iteratively to give real ranges if sufficient satellites are tracked (three if the height is known, otherwise four). This need for exact matching of timing errors explains the need for all of the complicated synchronisation between all 12 channels of the correlator.

The following relates only to the signal processing aspects of the software, to acquire and track signals from up to twelve satellites and to obtain the pseudo-ranges and the navigation message. The operation of the navigation software is not dependent on the details of the correlator, and so does not need to be included in this data sheet.

A pair of on-chip interrupt timebase signals are provided to help implement a data transfer protocol between the microprocessor and the 12-channel correlator at fixed time intervals; these signals are:

- INTOUT used to interrupt the microprocessor to retrieve accumulated data (1.023ms worth) period of interrupt normally less than 1ms.
- 2. MEAS_INT used to interrupt the microprocessor to retrieve Measurement data that occurs every TIC (approximately 100ms period).

These interrupts can be used to achieve instant response from the microprocessor via an Interrupt Service Routine. Otherwise software based polling scheme will be needed; the choice is set by the application. If the INTOUT interrupt is used, and perhaps also if polling is used, the data transfer rate is about twice the correlation result rate for each channel, so many transfers will not give new data. Examining the status registers before each transfer to see if new data is available and then only reading the data if it is useful can reduce bus use. The very wide variety of types of GNSS receiver needs to operate the correlator in different ways. So to accommodate this and also to allow dynamic adjustment of loop parameters, the SR8824 has been designed to use software for as many functions as possible. This flexibility means that the device cannot be used without a microprocessor closely linked to it, but as a processor is always needed to convert the output of the SR8824 into useful information this is not a significant limitation.

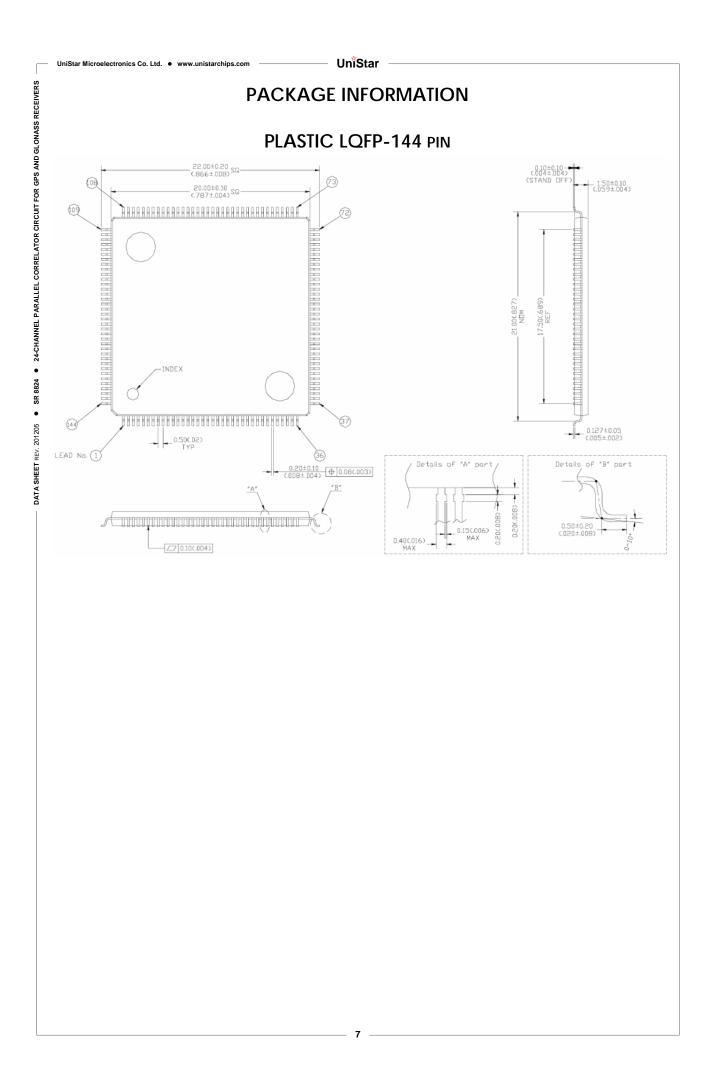
The software associated with the SR8824 can be divided into two separate modules:

1. Acquire and track satellite signals to give pseudo-ranges.

2. Process pseudo-ranges to give the navigation solution and format it in a form suitable for the user.

For the Navigation Solution to be possible all of the pseudoranges must have exactly the same clock error, which can then be removed iteratively to give real ranges if sufficient satellites are tracked (three if the height is known, otherwise four). This need for exact matching of timing errors explains the need for all of the complicated synchronisation between all 12 channels of the correlator.

The following relates only to the signal processing aspects of the software, to acquire and track signals from up to twelve satellites and to obtain the pseudo-ranges and the navigation message. The operation of the navigation software is not dependent on the details of the correlator, and so does not need to be included in this data sheet.


A pair of on-chip interrupt timebase signals are provided to help implement a data transfer protocol between the microprocessor and the 12-channel correlator at fixed time intervals; these signals are:

- INTOUT used to interrupt the microprocessor to retrieve accumulated data (1.023ms worth) period of interrupt normally less than 1ms.
- MEAS_INT used to interrupt the microprocessor to retrieve Measurement data that occurs every TIC (approximately 100ms period).

These interrupts can be used to achieve instant response from the microprocessor via an Interrupt Service Routine. Otherwise software based polling scheme will be needed; the choice is set by the application. If the INTOUT interrupt is used, and perhaps also if polling is used, the data transfer rate is about twice the correlation result rate for each channel, so many transfers will not give new data. Examining the status registers before each transfer to see if new data is available and then only reading the data if it is useful can reduce bus use.

It is important to note that the timing of each of the correlator channels will be locked to its own incoming signal and not to each other or to the microprocessor interrupts, so new data is generated asynchronously. The sampling instant of measurement data of all channels however is common to give a consistent navigation solution.

In order to acquire lock to the satellites as quickly as possible, the data from the last fix should be stored as a starting point for the next fix. It is also useful to make use of the embedded real-time clock on the chip to give a good estimate of GNSS time for the next fix; the navigation solution can be used to measure clock drift and calculate a correction for the clock to overcome ageing. The user's location (or a good estimate of it) along with the Almanac and the correct time will indicate which satellites should be searched for. These may be used to find an estimate of Doppler effects, while the previous clock error is the best available estimate of the present clock error. If this information is not available then the receiver must scan a much wider range of values, which will greatly increase the time to lock. The satellite Clock Correction and Ephemeris are needed for the navigation solution, so if a recent set is held in memory the calculations may begin as soon as lock is achieved and not need to wait for the Satellite Navigation message re-transmission (18 to 36 seconds).

